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ABSTRACT

Recent numerical and observational studies contain conflicting reports on the spectrum of magnetohydrodynamic
turbulence. In an attempt to clarify the issue we investigate anisotropic incompressible magnetohydrodynamic
turbulence with a strong guide field . We perform numerical simulations of the reduced MHD equations in aB0

special setting that allows us to elucidate the transition between weak and strong turbulent regimes. Denote ,kk

characteristic field-parallel and field-perpendicular wavenumbers of the fluctuations, and the fluctuatingk b⊥ l

field at the scale . We find that when the critical balance condition, , is satisfied, the turbulencel ∼ 1/k k B ∼ k b⊥ k 0 ⊥ l

is strong, and the energy spectrum is . As the width of the spectrum increases, the turbulence�3/2E(k ) ∝ k k⊥ ⊥ k

rapidly becomes weaker, and in the limit , the spectrum approaches . The observed�2k B k k b E(k ) ∝ kk 0 ⊥ l ⊥ ⊥
sensitivity of the spectrum to the balance of linear and nonlinear interactions may explain the conflicting numerical
and observational findings where this balance condition is not well controlled.

Subject headings:MHD — plasmas — solar wind — turbulence
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1. INTRODUCTION

In this Letter we investigate homogeneous and steadily
driven incompressible magnetohydrodynamic (MHD) turbu-
lence. In practical applications, such as fusion devices, solar
wind, and interstellar medium, turbulence is driven by various
large-scale instabilities, and turbulent energy is then spread
over a broad range of spatial scales due to nonlinear interactions
until small dissipative scales are reached where the energy is
removed from the system. In the interval of scales between the
injection and dissipation regions turbulence properties are
thought to be universal (e.g., Frisch 1995; Biskamp 2003).

The MHD equations describing the evolution of magnetic
and velocity fluctuations and in the presence ofb(x, t) v(x, t)
a guide field can be represented in the so-called Elsa¨sserB0

variables :�z p v � b

� � � �� z � (V · �)z � (z · �)z p ��P � f, (1)t A

where is the Alfve´n velocity, r is the fluid1/2V p B /(4pr)A 0

density,P is the pressure that is determined from the incom-
pressibility condition, , represents a large-scale�� · z p 0 f
forcing, and we omit the terms representing small viscosity and
resistivity. The linear term on the left-hand side of equation
(1), , is responsible for advection of the and� � �(V · �)z z zA

wave packets, with the Alfve´n velocity along the guide field.
The nonlinear term, , describes the interaction of tur-� �(z · �)z
bulent fluctuations, and it is responsible for the energy transfer
among different spatial scales. The nonlinear term is considered
small if

k B k k b , (2)k 0 ⊥ l

where and are typical field-parallel and field-perpendiculark kk ⊥
wavenumbers of the fluctuations’ spectrum, and (KB0) isbl

the typical magnitude of fluctuations at the scale . Thisl ∼ 1/k⊥
regime is referred to as “weak turbulence.”

The regime when the nonlinear term in not formally small
will be called “strong turbulence.” One can argue that in strong

turbulence the following critical balance condition should be
maintained at all scales (Goldreich & Sridhar 1995):

k B ∼ k b . (3)k 0 ⊥ l

Indeed, during the characteristic time of nonlinear interaction,
, the fluctuations become correlated along thet ∼ 1/(k b )N ⊥ l

guide field up to a distance . This causality conditionl ∼ Vtk A N

ensures the critical balance (3). Depending on the way tur-
bulence is excited, it satisfies either condition (2) or (3) in a
certain range of scales.

Recent numerical simulations and analytic modeling suggest
that in the case of strong turbulence (eq. [3]), the field-per-
pendicular energy spectrum is (Maron & Gold-�3/2E(k ) ∝ k⊥ ⊥
reich 2001; Mu¨ller & Grappin 2005; Boldyrev 2005, 2006;
Mason et al. 2006, 2007). However, geophysical and astro-
physical observations often exhibit somewhat steeper spectra
(e.g., Goldstein et al. 1995; Bale et al. 2005). This raises the
question of to what extent such systems can be described in
the framework of MHD turbulence.

In the present work we conduct direct numerical simulations
of reduced MHD equations, driven by a force with varying

spectral width. This provides a unifying numerical settingkk

allowing one to address the regimes of weak and strong tur-
bulence in the same framework. We observe that when the
critical balance (3) is satisfied, the spectrum of strong MHD
turbulence is close to�3/2. When the critical balance condition
(3) is even slightly broken, the spectrum steepens. As the weak
turbulence condition (2) becomes better satisfied, the spectral
exponent approaches�2 in accord with the theory of weak
turbulence (Ng & Bhattacharjee 1996; Galtier et al. 2000). The
observed sensitivity of the spectrum to the forcing details may
explain conflicting results of numerical and astrophysical ob-
servations, where the spectral properties of forcing are either
not well controlled or not well known.

According to the standard derivation (e.g., Biskamp 2003),
the reduced MHD equations are valid in the region ;k k k⊥ k

therefore, their applicability in the strong turbulence regime
(3) is justified. Their applicability in the weak turbulence re-
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gime (2), however, requires an explanation, which we provide
in the following sections.

2. WEAK MHD TURBULENCE

When condition (2) is satisfied, one may assume that tur-
bulence consists of shear-Alfve´n and pseudo-Alfve´n waves,
weakly interacting with each other. In the absence of nonlinear
interaction, the waves would have random phases, and the
Gaussian rule could be applied to express their higher order
correlation functions through the second-order ones.1 Galtier
et al. (2000) developed a perturbative theory of weak MHD
turbulence based on such random phase approximation. By
expanding the MHD equation (1) up to the second order in the
nonlinear interaction and using the Gaussian rule to split the
fourth-order correlators, they derived a closed system of kinetic
equations governing the wave energy spectra.

These equations demonstrate that wave energy cascades in
the Fourier space in the direction of large , and the universalk⊥
spectrum of wave turbulence is established in the region

. In this limit the dynamics of the shear-Alfve´n wavesk k k⊥ k

decouple from the dynamics of the pseudo-Alfve´n waves, and
the pseudo-Alfve´n waves are passively scattered by the shear-
Alfvén ones. The kinetic equation for the energy spectrum of
shear-Alfvén waves, , derived by Galtier et al. (2000)e(k, t)
then reads

� e(k) p M e(q)[e( p) � e(k)]d(q )d . (4)t � k,pq k k,pq

In this expression, the interaction kernel isM pk,pq

, and we adopt the short-2 2 2 2 2(p/V )(k � q ) (k · p ) /(k q p )A ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
hand notation . The phase-vol-3 3d { d(k � p � q) d p d qk,pq

ume compensated energy spectrum is then calculated asE(k,
. The stationary solution of equa-t)dk dk p e(k, t)k dk dkk ⊥ ⊥ k ⊥

tion (4) was found analytically and verified numerically in
Galtier et al. (2000). It has the general form ,�2E(k) p f (k )kk ⊥
where is an arbitrary function that is smooth at .f (k ) k p 0k k

It should be noted, however, that the derivation of equation
(4) based on the weak interaction approximation is not rigorous.
As follows from equation (4), only the components ofq p 0k

the energy spectrum are responsible for the energy transfer.e(q)
However, if we apply equation (4) to these dynamically im-
portant components themselves, that is, if we set ink p 0k

equation (4), we observe an inconsistency. Indeed, the pertur-
bative approach implies that the linear frequencies of the waves
are much larger than the frequency of their nonlinear inter-
action. The nonlinear interaction in equation (4) remains non-
zero as while the linear frequency of the correspondingk r 0k

Alfvén modes, , vanishes. Therefore, as shown byq p k Vk k A

Galtier et al. (2000) the additional assumption of smoothness
of the function at is crucial for deriving the spec-f (k ) k p 0k k

trum .�2E(k) ∝ k⊥
A definitive numerical verification of such a spectrum seems

therefore desirable. While numerical integration of a scattering
model based on MHD equations expanded up to the second
order in nonlinear interaction does reproduce the�2 exponent
(Bhattacharjee & Ng 2001; Ng et al. 2003), this spectrum has
not yet been confirmed in direct numerical simulations of sys-

1 Many papers contributed over the years to the development of fundamental
ideas on MHD turbulence; see, e.g., the reviews in Biskamp (2003) and Ng
et al. (2003). The general methods of weak turbulence theory are reviewed in
Zakharov et al. (1992) and Newell et al. (2001).

tem (1). The major problem faced by such simulations is to
simultaneously satisfy the two conditions, andk k k⊥ k

, which is hard to achieve with present-day com-k B k k bk 0 ⊥ l

puting power. In the next section we discuss a numerical setting
in which the spectrum of weak turbulence can be verified.

3. MODEL EQUATIONS

An important fact concerning equation (4) was emphasized
by Galtier & Chandran (2006). They noted that there exists a
dynamical system that leads to exactly the same kinetic equa-
tion (4) in the weak turbulence regime (2),without any addi-
tional restrictions on and . To derive this system, we notek k⊥ k

that in the universal regime where equation (4) is applicable,
the polarization vectors of the pseudo-Alfve´n modes are almost
parallel to the guide field. One can therefore consider a system
where such modes are eliminated forarbitrary by restrictingk
the initial MHD system to field-perpendicular fluctuations,

:�z̃

1
� � � � 2 � ˜˜ ˜ ˜ ˜ ˜� z � (V · �)z � (z · �)z p �� P � ∇ z � f,t A ⊥ Re

�˜� · z p 0. (5)

The fluctuating fields here have only two vector components,
, but depend on all three spatial coordinates.� � �˜ ˜ ˜z p { z , z , 0}1 2

Although system (5) is not presented in Galtier & Chandran
(2006), their analysis of system (1) is equivalent to solving
such a system. Formally, system (5) is equivalent to the reduced
MHD equations (e.g., Biskamp 2003; Shebalin et al. 1983).
The principal difference is in the limits of validity: the reduced
MHD model is applicable only for , while we considerk k k⊥ k

system (5) without any restrictions.
Within the formalism of the weak turbulence theory both

systems (1) and (5) lead to the same kinetic equation (4) for
the shear-Alfve´n turbulence. We thus conclude that the wave
energy spectrum obtained from the full MHD system (1) under
the assumption should coincide with the spectrum ob-k k k⊥ k

tained from the restricted system (5), where the condition
is not required. On the other hand, strong turbulencek k k⊥ k

is expected to develop when , which is preciselyk B ∼ k bk 0 ⊥ l

the domain in which reduced MHD provides a good approx-
imation of the full MHD model. This opens an effective way
for numerical investigation of both strong and weak MHD
turbulence in the same framework, and is the goal of the present
Letter.

4. NUMERICAL METHOD AND RESULTS

We solve numerically the restricted MHD model (5) using
a fully dealiased pseudospectral technique in a periodic box
that is elongated along the guide field with aspect ratioB0

. The random force has no component alongz, it˜2p : 2p : L fz

is solenoidal in the plane, and its Fourier coefficients outsidex-y
the range , are zero, where1 ≤ k ≤ 2 (2p/L ) ≤ k ≤ (2p/L )n⊥ z k z z

integer determines the width of the force spectrum in . Then kz k

Fourier coefficients inside that range are Gaussian random num-
bers with amplitude chosen so that the resulting rms velocity
fluctuations are of order unity. The individual random values are
refreshed independently at time intervals .t p 0.1L /(2pU )⊥ rms

The parameters and control the degree to which conditionn Lz z

(2) or (3) is satisfied at the forcing scale. Note that we donot
drive the modes but allow them to be generated byk p 0k

nonlinear interactions. The Reynolds number is defined as
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Fig. 1.—Field-perpendicular energy spectrum of MHD turbulence,E(k )⊥
calculated by direct numerical integration of eq. (5). The presented cases
correspond, from bottom to top, tok p 1/6, 1/5, 2/5, 4/5, 8/5, 16/5. For clarity,
the curves in the top panel are arbitrarily offset in the vertical direction.

Fig. 2.—Contour plots of the anisotropic energy spectra for the cases
(bottom), (middle), and (top). The colors representk p 1/6 k p 4/5 k p 16/5

energy on a log scale, normalized to the energy of the most dominant large-
scale mode. [See the electronic edition of the Journal for a color version of
this figure.]

, where (p2p) is the field-perpendic-Rep U (L /2p)/n Lrms ⊥ ⊥
ular box size,n is fluid viscosity, and (∼1) is the rms valueUrms

of velocity fluctuations. In our case magnetic resistivity and
fluid viscosity are the same, . The system is evolved untiln p h
a stationary state is reached, as determined by the time evo-
lution of the total energy of the fluctuations. A typical run
produces from 30 to 60 snapshots. The field-perpendicular en-
ergy spectrum is obtained by averaging the angle-integrated
Fourier spectrum, ,2 2E(k ) p 0.5AFv(k )F Sk � 0.5AFb(k )F Sk⊥ ⊥ ⊥ ⊥ ⊥
over field-perpendicular planes in all snapshots.

We performed a series of simulations for ,B p 5 L p0 z

, and . We used the resolution mesh35L n p 1, 2, 4, 8, 16 256⊥ z

points in these simulations (and ), except for the caseRep 800
, where the resolution was (andn p 16 512# 512# 256z

). We also performed a simulation with ,Re p 2000 B p 5⊥ 0

, and and the resolutionL p 6L n p 1 512# 512# 256z ⊥ z

(and ). Figure 1 shows the field-perpendicular en-Re p 2000⊥
ergy spectra for each run. All the runs have different values
of parameter that measures deviation from thek { (2p/L )nz z

critical balance condition (3).
We found that as the spectral width of the forcing along
increases, higher and higher frequency modes of the velocitykk

and magnetic fields are excited. For run , all the forcedk p 1/6
modes have linear frequency , which correspondsq p k B ≈ 1k 0

to a critically balanced forcing.2 In this case, the spectrum is
. This result is consistent with recent numerical�3/2E(k ) ∝ k⊥ ⊥

simulation of full MHD by Mason et al. (2007) since the re-
duced MHD system approximates the full MHD system when
the critical balance condition is satisfied. As we increase the
parameterk, we break the critical balance condition at the
forcing scales. As a result, the spectrum monotonically steepens

2 It is important to keep in mind that the critical balance condition should
be interpreted in an order-of-magnitude fashion, and that its validity is ulti-
mately verified by the resulting spectrum of strong turbulence.

from �3/2 in the strong turbulence case to�2 in the weak
turbulence case, as shown in Figure 1.

Figure 2 shows isocontours of the full energy spectrum
as a function of and for the three typical casesE(k , k ) k kk ⊥ ⊥ k

. The bottom frame presents the energy dis-k p 1/6, 4/5, 16/5
tribution for the case , where the random force preservesk p 1/6
the critical balance. As the cascade continues deeper into the
inertial range, higher frequency modes are generatedq p k Bk 0

by virtue of nonlinear interactions, just enough to maintain the
critical balance condition at all scales, and establish a strong
turbulence spectrum. As the frequency of the forced Alfve´n
modes increases in the casesk p (2, …, 16)/5, the parallel
cascade is slightly inhibited as the weaker interaction among the
large-scale Alfve´n modes dominates the energy transfer to
smaller scales, resulting in a steepening of the field-perpendicular
energy spectrum. This can be seen in the middle and top frames
in Figure 2, where the distribution of energy becomes more and
more elongated along rather than .k k⊥ k

5. DISCUSSION

Our numerical results demonstrate that if the energy spec-
trum has a limited extent, increasing the width of the forcingkk

spectrum leads to the energy spectrum of weak turbulence
∝ . If however the width of the forcing is limited, but we�2k k⊥ k

can achieve arbitrarily high resolution in the direction, thek⊥
interaction between Alfve´n modes will eventually become
strong enough to satisfy critical balance and establish a strong
turbulence spectrum.

This is partly supported by the following derivation. It can
be proved that turbulent fluctuations described by system (5)
satisfy the exact relation

� � 2 �˜˜Adz (dz ) S p �2e r , (6)l ⊥

where , and is the� � � � �˜ ˜ ˜ ˜dz p z (x � r ) � z (x) dz p dz · r /r⊥ l ⊥ ⊥
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longitudinal component of . Averaging is taken over the�˜dz
statistical ensemble, or over time and spatial positionx. In this
formula, are the constant rates of and energy dissi-� � �˜ ˜e z z
pation. In the isotropic case, that is, without the guide field,
the relation analogous to equation (6) was derived by Politano
& Pouquet (1998). We now prove the following general in-
equality:

� � 2 2 � 2 � 4˜ ˜ ˜˜Adz (dz ) S ≤ A(dz ) SA(dz ) S. (7)l

The first step is to use the Schwartz inequality,
; the second step is to note that� � 2 2 � 2 � 4˜ ˜˜ ˜Adz (dz ) S ≤ A(dz ) SA(dz ) Sl l

, which completes the proof.� 2 � 2˜˜(dz ) ≤ (dz )l

Both sides in expression (7) have finite limits as viscosity
and resistivity go to zero. In the inertial interval, the correlation
functions on the right-hand side of this expression have a
power-law behavior, that is, and� 2 z � 4 z2 4˜ ˜A(dz ) S ∝ r A(dz ) S ∝ r⊥ ⊥
(we assume statistical symmetry between and ). Since the� �˜ ˜z z
left-hand side of equation (7) scales as∝ , and the inequality2r⊥
should hold for arbitrarily small , we obtain the exact resultr⊥

z � z ≤ 2. (8)2 4

This inequality is useful for evaluation of these exponents
from numerical simulations or experiments since theratio of
these exponents is well measured by the method of extended
self-similarity (Benzi et al. 1993). Inequality (8) then provides
a boundary on the turbulence energy spectrum that is related
to the second-order scaling exponent as In our�1�z2E(k ) ∝ k .⊥ ⊥
case, the scaling exponent is usually close to within smallz 2z4 2

intermittency corrections, which can be checked numerically
(e.g., Müller et al. 2003). Inequality (8) then implies that

, and, therefore, the field-perpendicular energy spectrum3z ≤ 22

cannot be essentially steeper than in the limit�5/3E(k ) ∝ k⊥ ⊥
.k r �⊥

Note, however, that in our numerical findings the spectral
exponent�5/3 is not distinguished in any way; rather, the field-
perpendicular energy spectrum of strong MHD turbulence is
flatter and closer to�3/2. This is consistent with recent results
of Müller & Grappin (2005) and Mason et al. (2007), and also
with high-resolution simulations of isotropic MHD turbulence
by Haugen et al. (2003) and Mininni & Pouquet (2007). Astro-
physical observations of the solar wind and of the interstellar
medium reveal the presence of MHD turbulence, and find sup-
port for both�5/3 and�3/2 spectral exponents (e.g., Goldstein
et al. 1995; Goldstein & Roberts 1999; Bale et al. 2005; Bo-
rovsky 2006; Podesta et al. 2006; Smirnova et al. 2006). How-
ever, statistics of such data are often not good enough to dis-
tinguish between “�5/3” and “�3/2” with confidence. On the
numerical side, simulations of MHD turbulence in the frame-
work of reduced MHD were performed in many works (e.g.,
Dmitruk et al. 2003; Go´mez et al. 2005; Rappazzo et al. 2007);
however, either the simulation domain was not anisotropic to
ensure the critical balance condition (3), or the driving force
was not spatially homogeneous, for example, applied at the
boundary of the domain.

Our results suggest that the interpretation of observational
and numerical results may be obscured if the and structurek kk ⊥
of the spectrum is either not well measured or not well con-
trolled, in which case it is hard to deduce whether the field-
parallel dynamics have been captured and whether the universal
regime of MHD turbulence has been established.
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